skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krantz, Jacob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In a world of proliferating data, the abil- ity to rapidly summarize text is grow- ing in importance. Automatic summariza- tion of text can be thought of as a se- quence to sequence problem. Another area of natural language processing that solves a sequence to sequence problem is ma- chine translation, which is rapidly evolv- ing due to the development of attention- based encoder-decoder networks. This work applies these modern techniques to abstractive summarization. We perform analysis on various attention mechanisms for summarization with the goal of devel- oping an approach and architecture aimed at improving the state of the art. In par- ticular, we modify and optimize a trans- lation model with self-attention for gener- ating abstractive sentence summaries. The effectiveness of this base model along with attention variants is compared and ana- lyzed in the context of standardized eval- uation sets and test metrics. However, we show that these metrics are limited in their ability to effectively score abstractive summaries, and propose a new approach based on the intuition that an abstractive model requires an abstractive evaluation. 
    more » « less